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Abstract—This paper elaborates on the analysis and design of the solidification of pure metals. In
the first part of this paper, a direct analysis is presented for the motion of the solid-liquid freezing
interface and the time-dependent temperature field. An iterative implicit algorithm has been
developed for this purpose using the boundary element method (BEM) with time dependent Green’s
functions and convolution integrals. Emphasis is placed on two-dimensional examples. The second
part of this paper provides a methodology for the solution of an inverse design Stefan problem. A
method for controlling the fluxes at the freezing front and its velocity is demonstrated. The BEM
in conjunction with a sequential least squares technique are used to solve this ill-posed problem
that has important technological applications. The accuracy of the method is illustrated through
one-dimensional numerical examples.

1. INTRODUCTION

Problems of solidification of pure substances share the characteristic of an isothermal
moving interface (freezing front). The freezing front motion and fluxes must be calculated
as part of the solution of the phase change boundary value problem. Heat conduction is
assumed in both solid and liquid phases and all thermal properties are considered tem-
perature independent.

The flux discontinuity at any point of the interface is related to its normal velocity by
the equation balancing the rate of heat flow with the energy rate required to create a fresh
amount of solid per unit time (Stefan condition).

A solidification problem is considered direct when the temperature or the flux on the
fixed boundary of a solidifying body, with given material properties, is prescribed.

There is an extensive literature on the above and related “Stefan” problems. The
methods used to solve these problems can be categorized (Crank, 1984) into analytical,
front-tracking, front-fixing and fixed-domain methods. The existing analytical solutions are
primarily for one-dimensional problems (Crank, 1984) and two-dimensional wedge-shaped
spaces (Budhia and Kreith, 1973 ; Rathjen and Jiji, 1971).

Front-tracking methods involve finite differences or finite elements on a fixed grid
(Lazaridis, 1969; Rao and Sastri, 1984), or on a variable space grid (Murray and Landis,
1959) or the use of adaptive meshes (Bonnerot and Janet, 1977; Lynch, 1982 ; Albert and
O’Neill, 1986 ; Zabaras and Ruan, 1990). An alternative formulation includes front-fixing
methods (Crank and Gupta, 1975) where the moving front is fixed by a suitable choice of
space coordinates. In the fixed-domain methods the problem is formulated in such a way
that the interface condition becomes implicit in a new form of the equations, which applies
over the whole of a fixed domain (Ralph and Bathe, 1982 ; Hsiao, 1985; Voller and Cross,
1981 ; Roose and Storrer, 1984).

Integral formulations for one-dimensional problems have been applied extensively in
the past (Chuang and Szekely, 1972; Banerjee and Shaw, 1982; Heinlein et al., 1986;
O’Neill, 1983 ; Sadegh et al., 1985). O’Neill (1983) gave a general integral formulation for
quasi-static phase change problems, while Zabaras and Mukherjee (1987) extended this
work to transient problems. Similar work has also been reported by Sadegh ez al. (1985).
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Hong et al. (1984) have solved two-dimensional solidification problems by updating the
position of the interface at each time step while keeping the interface location fixed during
the calculation of the temperature field at each time step.

This first part of this paper is concerned with a BEM formulation of two-dimensicnal
direct solidification problems. The general integral equations are presented together with
their numerical implementation. Special emphasis is given on key issues such as the accurate
calculation of singular integrals, the iterative technique and the calculation of the interface
motion. Numerical results for some sample two-dimensional solidification problems are
presented and discussed. The detailed analysis is presented in an earlier publication by the
authors (Zabaras and Mukherjee, 1987).

Design Stefan problems, where the temperature, fluxes and velocity are prescribed on
the freezing front, while the temperature and the flux on the fixed boundary of the domain
of interest are unknown and must be determined by the analysis, are also discussed in this
paper. They were first introduced in one dimension by Zabaras et al. (1988) who extended
Beck’s (Beck et al., 1985) sensitivity analysis to problems with phase changes using a BEM
analysis. By controlling the freezing interface fluxes and velocities during solidification the
cast structure can be controlled and made more uniform (Zabaras ef af., 1988 ; Flemings,
1974). Further discussion and finite element results of such inverse design Stefan problems
are given in recent publications by Zabaras and co-workers (Zabaras and Ruan, 1989;
Zabaras, 1990; Ruan and Zabaras, 1991 ; Zabaras ef al., 1992). Here, our work reported
in Zabaras et al. (1988) is extended to two-dimensional problems. Smoothing in time and
space is introduced in the sense used by Zabaras et al. (1992). The BEM analysis allows
easy and accurate calculation of the sensitivity coefficients and provides certain other
advantages by permitting direct calculation of the surface fluxes. Typical one-dimensional
results are reported and discussed at the end of this paper.

2. DIRECT ANALYSIS OF SOLIDIFICATION

2.1. Governing differential equations

A liquid at an initially uniform temperature T; (equal to or above the melting point
T,,) is assumed to occupy a region with a fixed boundary dB,. At time 7 > 0, the boundary
0B, is cooled to a temperature lower than the melting temperature 7,,. Solidification
starts all around 6B, and proceeds inwards. The interface at some time ¢ is denoted by
dB,; (Fig. 1).

The governing differential equations, in the absence of heat sources and with constant
material parameter, are (Crank, 1984) :

oT,

at (X, t) = ksVZTs(xa t) XEBS, (i)
oT,
Bg(x, 1) =kV’T(x,1) xeBy, ()

Solid Bs

Fig. 1. Geometry of the solidification problem [from Zabaras and Mukherjee (1987)].
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where for example, T,(x, f) is the temperature at the point x € B, at time ¢ and the rest of
the notation is clear from Fig. 1.

The thermal diffusivity k, of the solid phase is equal to K,/p,c, in terms of its conductivity
K, densitiy p, and specific heat c,, respectively. Similar notation is used for k;. The boundary,
initial and freezing interface conditions are given as:

T(x,t) = To(x,t) X€0B,, (3a)
Ks(%_‘: = q(xs t) = CIo(Xa t) XE@BOZ, (3b)
T(x,) =T, xe€oB, 3¢)

a7, o1, ov,
Ksa—m—Kzgr}:—PsL a1 xedB,, (3d)
Bg=0 at ¢=0, (3e)
T(x,0) = T, = const x e B, (0), (3f)

where T is a prescribed temperature history on the part 6B, of 0B, and g, is the prescribed
flux on the remaining part dB,, of 0B,, T, is the melting point of the solid and L the latent
heat of fusion. Further, V, is the normal velocity of the solidification front at a point on
0B;.

To simplify the involved calculations we assume that 7 is constant throughout B, (0).
With new simplified notations for fluxes, one can write the freezing interface normal velocity
in the form

1 1
Vn - ;)Tl:qms - py—LqMI, (4)

where

0T, oT,

Gms = ng;l: and ¢, = K’ans for xedB,.

A direct solidification problem is defined as one of solving eqns (1)—(4) for the interface
normal velocity V,, and the temperature field. This can be achieved by solving the integral
equations as presented next.

2.2. Integral formulation
One can write the following integral equations (Zabaras and Mukherjee, 1987). For
the solid phase, with Pe 0B, = ¢B,u 8B;:

! oG
C(P)T(P, t) = J:) dt() .LB [Gs(Pst; Q’ IO)QO(Qa to)_ksa—ns(ljst; Qa f{))TO(Qa t())] dSQ

! oG,
+J dtOJ [GS(P9ts Q9 tﬂ)qms(Q’ tO)_ks a (P’ t; Q; tO)Tm
0 o8, Ay

+Gs(Pats Q’ tO)Tm Vn(Q’ t())] dSQ (5)

with the temperature T on the left-hand side of the above equation being equal to T, and
T, respectively, for the cases Pe dB, and Pe dB,,. These equations are called (5a) and (5b),
respectively, for ease of reference.

For the liquid phase, with PedB,
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! oG,
c(PYT,—T) = , ds . [G(P,1; O, t)(—qmi(Q, to))—klé;;(P,l; Q,toN(T,,—T)

+G1(P5t; Q! tO)(Tm_Tl)(_Vn(Q9 tO))]dSQ (6)

with the Green’s functions G, and G, defined as

r2
exp [_ 4k(t_f0)]

G(Paféq,to)=—[zma @)

where m is the dimension of the problem and ¢(P) in eqns (5) and (6) is specified as in
Zabaras and Mukherjee (1987).
A major simplification arises in eqn (6) if T, = T,,,.

2.3. Numerical implementation

The solution strategy consists of the use of suitable shape functions, in space as well
as in time, for the unknowns of the problem, and marching forward in time. The solid-
liquid interface, of course, is part of the solution and must be updated continuously in time.
Convolution type integrals must be calculated over a variable domain all the way from the
initial zero time.

The boundaries 0B, and 0B, are divided into N, and N, (at time zero) linear straight
segments. The freezing interface mesh is considered, in general, a function of time. This is
in order to account for the movement of the freezing front. Omitting indications of source
and field points, the discretized forms of eqns (5a), (5b) and (6) are:

For the solid phase, with Pe dB,;

oG
|:qu0 —k,—— TO] dSy

F 1 Ny
c(P)T,(tr) = Y, f dlokzl " ™

S=1Jdi

0

F 1 Na(to) aG
+f f dtO Z I:G:(qms+ Tm V,,)—ksg—i Tm:l dSQ (8)
' k=1 Jos, n

=1 Ji

and, with PedB,

S aG,
c(P)To(P, tr) = Z dzg z Gs‘]()—ksgz T, |dSy

S=1 Jt k=1 e

F L Na(to) oG
+ Z dto Z Gs(qms+Tm Vn)_ks_’s‘ Tm dSQ (9)
7 k=1 Jos, on,

f=1J s

For the liquid phase, with PedB;

Na{to)

c(PY(T,(t))—T) = ), Jf dey ). J; [Gl(—le—(Tm—Ti)Vn)
F=1dy k=1 B,

&

4G,
—k, an (T, — T.-)] dSq. (10)

Note that the interface velocity and position enter the above equations in an explicit
as well as in an implicit and nonlinear manner through the Green’s functions.
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Linear shape functions in space and in time are chosen here. Specifically, for the time
step (¢;_1, /), and for a straight boundary element on 0B, with nodes 1 and 2 denoting the
start and end of the element, the flux g¢,,, for example, can be written as

s = DLW 1Q’£;,1 +¢2‘/’1Q£;21 +¢1l//24r{u, +¢2'1[/2qr{uz’ ay

where the spatial and time shape functions ¢; and i, are given as
¢, =1—s/As, ¢, =s/As, (12)
Vo= (t—to)JAty, Yy = (tg—1t,1)/Aty, (13)
with At; = 1,~1,_, and g}, denoting the nodal flux at node i at time ¢,. The distance s is
measured along the element of length As(f), starting at node 1. Expressions similar to (12)

are also valid for ¢,,, V, and ¢,.
The integrals which appear in egns (8)—(10) have one of the following forms:

s aG
I, = dr ;—ds, 14a
: .[;~1 ’ j;Bk ¢’ on ( )
! s 0G
Lo=k| dr| Sy, ds, 14b
2 J:f‘x OJ;B&AS{/I on ’ ( )
ir
],-3 = J. dtoJ\ ll/,G ds, (14C)
[ [
I ﬁf d J ° yGd (14d
i4 = ! ALi >
4 - 0 QBkASq'/ S )

for i = 1,2 and éB, an element on the stationary boundary dB, or on the moving interface
0B,. The source point of reference in the above integrals can lie on 0B, or dB,.

2.4. Evaluation of integrals
(a) Integration over B, with source point on 0 B,. This case includes integrals similar
to those for non-phase change heat condition problems [see Brebbia et al. (1984)].
(b) Integration on éB; with source point on 0B,. With estimation of the position of
the source point a Gaussian integration in space and in time can be effective (no
singular integrals appear in this category). The interface position at time z can
be estimated, by assuming that the interface moves during the interval (t7_,, 1)
with the velocity it has at time ¢,_ ;.
(c) Integration over dB, with source point on 0B,
(i) case t, =1y
Using an estimate of the position of the interface during the interval (z5_ , t),
simple Gaussian integration can be effective.
(ii) case t;# tp
Considering that the interface is moving on the interval (¢, ;) with the
constant known velocity (V,+ V;_,)/2, Gaussian integration can be used,
where V,yand V,_, are the velocities at the end and beginning of the time
interval.
(d) Integration over 0B, with source point on 0B,.
(i) case t;# i
This case is very similar to the cases (b) and (¢) above
@) ;=1
If the source point P¢ 0B, similar ideas as above can be applied. The singular

SAS 31:12/13-N
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case Pe 0B, requires special care. Splitting, for example (14d), into two parts

I3 and I}y
153 153
I, =J dtof V.G dS+J dtoj ¥,G dS,
iy ['B[k 1} ﬁB.A

where
=1t 1 +iti—tr )

the first integral /7 is nonsingular and can be evaluated as before. The singular
integral I}, is obtained as follows. Since the interval ¢ty—t¥* is small, it is
assumed that the order of the spatial and time integral can be reversed in this
case even though the interface element moves a little during this time interval.
This assumption permits I7; to be evaluated analytically as is done for the
integrals in case (a) above. The shape functions in I7; are defined over the
entire interval 7, |, f. The final expressions for these integrals are given in
Zabaras and Mukherjee (1987).

2.5. Modeling of corners
Single corner nodes on the interface éB,. A length weighted average normal n at the
corner node / is defined as

n=(,_n_,+In)/(;_+1) (15)

in terms of the lengths /;,_, and /; and unit normals n,_, and n; of contiguous elements. The
normal velocity ¥V, at node i is now assigned along the unit vector n/|n|.

Physical corners on the freezing interface are modelled by double nodes. Let V(i) and
V,(i+1) be the normal velocities at the (physically same) nodes i and i+ 1. To avoid singular
matrices, we assume that the physical corner has a unique velocity of magnitude ¥, in the
average normal direction n defined by eqn (15) with /; and n, replaced by /,,, and n,,
respectively.

An independent relation between V,;, and V,, , results as

V(e ) = Vi y(mem;_ ) = 0. (16)

The tangential motion of the freezing interface modes does not come into the physics
of the problem. However, it has to be specified artificially by the analyst so that the proper
mesh is always preserved on ¢B,. Further discussion of the importance of the tangential
motion of interface nodes is given in Zabaras and Ruan (1990).

Double nodes are also used at points on 0B, in order to allow for flux discontinuities
across geometric corners. An interesting situation arises at a physical corner on B, if the
temperature 7 is prescribed on both elements meeting there. Again, a singular matrix can
be avoided in this situation by including an extra equation. The unknown flux at one of the
double nodes is replaced by the flux obtained by backward differences from the prescribed
temperatures on contiguous elements at these nodes.

2.6. Matrix formulation

Let us consider the case when T, is prescribed all over B,. Equations (4) and (8)—(9)
contain the unknown nodal boundary vectors q/,, q5, and g} at time ¢,. In matrix form we
can write them as:
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(Al [4l; [A[am €

[Bl. [Bls [E] G |=1C1 (17)
ry, L [eldlas "

where
o=1+T,/pL, (182)
B= —T,/pL, (18b)
y=—(T.—T)/pL, (18¢c)
0= —1+(T,,—T)/pL (18d)

and [¢] denotes the zero matrix. The matrices [4], [B], [T'], [A] and [E] contain calculations
over the last time step (7;_, to ). The vectors on the right side of (17) are known from
previous calculations (time zero to t, ;) and the applied boundary conditions, and they
are not given explicitly here.

For the case T,, = T, a reduced form of eqn (17) (with g, = 0) has been used. For the
superheated case (T; > T,,) eqn (17) has been combined with the following equation:

1
p—_L (qis - qlf;[) = Vpr ) (19)

where V, is the predicted velocity vector in the time interval t4_, to t5.

Equations (18) and (19) have been solved in a least squares sense for the flux vectors
Qs> G @a0d qo. Equation (19) is introduced in order to avoid numerical divergence which
appears at early times, when 0B, = 0B, and when eqn (17) is used alone. It is obvious that
a proper scaling of eqns (17) and (19) has to be used before their final solution.

A simple iterative procedure is adopted here. Before updating the geometry and
continuation to the next time step, one must check if the nodal positions on ¢éB; at time ¢,
predicted at the end of a successful iteration, are such that numerical instabilities could
appear at the next time step ¢, to #5, ;. These instabilities usually occur when the freezing
interface nodes come very close to each other. If this is the case, then remeshing must be
performed by node removal or node rearrangement (i.e. by introducing nodal motion
tangential to the interface).

The advantage of this BEM formulation with respect to the so-called “domain
methods™ and other front tracking techniques is that for the calculation of the temperature
at points internal to the domain one does not have to calculate all the internal temperatures
over the entire domain. The equation corresponding to internal temperature calculation is
not given here, but it has a form similar to that of the boundary equations given earlier.
Two disadvantages are also present in the BEM analysis. At first, like in other front tracking
techniques (Zabaras and Ruan, 1990), one must assume at time zero the existence of some
solid (Zabaras and Mukherjee, 1987). The second major disadvantage is that the fluxes g,,,
and g, appear separately in the analysis and not in the combined form which yields the
normal interface velocity [see eqn (4)]. As a result, the direct calculation of both interface
fluxes leads to progressively incorrect front motion which can eventually violate global
energy conservation. For a weak form of the Stefan condition, an energy conserving scheme
and more references on the subject see Zabaras and Ruan (1990).

3. AN INVERSE/DESIGN SOLIDIFICATION PROBLEM

3.1. The problem
Of concern here is an inverse-design solidification problem that is defined as follows
“Given the thermal properties of the solid and liquid phases and the melting temperature,
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calculate the boundary flux/temperature on 8B, that achieves a desired freezing front
motion.”

For solidification in a one-dimensional region 0 < x < /, one must specify the interface
fluxes g,,(1) and g,,(t) instead of specifying only the interface motion V(). In this case,
Zabaras et al. (1988) have shown that two uncoupled inverse problems arise: one in the
solid and another in the liquid phase. They derived an unstable analytical solution in the
form of an infinite series involving the prescribed interface flux and velocity and their time
derivatives.

The importance of the above and related design solidification problems lies in the fact
that the quality of the solidifying crystals is directly related to the freezing interface fluxes
and velocity rather than the applied cooling boundary conditions on Q. These problems
are ill-posed in the sense that their solution may not be unique and stable to small changes
in the desired interface motion. Here a general methodology will be presented for two-
dimensional problems and some one-dimensional examples will be discussed.

3.2. Future information and spatial regularization methods

The boundary element analysis prescribed earlier is a convenient tool for the analysis
of the above design problem since the freezing interface position/motion is known a priori.
Indeed, let us consider a boundary element discretization of 0Q, and 8}, and a time stepping
process. The main unknowns of the design problem are considered to be the nodal fluxes
(or temperatures) all over 0Q,. Let q5 denote the boundary nodal unknown fluxes on 2B,
att = 1y 1€,

ql(;: {qghq}(;b""qgi"'"q[‘;Nl}T’ (20)

where N, is the number of variables to be estimated, and ¢f; are the boundary heat fluxes
at the ith boundary nodes and at time ¢,. The given interface motion/position is treated as
a boundary condition on éB,. Then, one can consider that the temperature field at any
point inside the domain is a function of g} (through the solution of a direct boundary value
problem). Assume that the temperature distribution at time 7, , is known and that qg. is
an estimate of the vector of boundary nodal fluxes. Let the times 7., _,, i=1,2,...,r, be
future times with r —1 denoting the number of future time steps and N, be the number of
nodes on 8B,. Then, following Beck ez al. (1985), the vector 5 *'~ ! is temporally constrained
to be given as 57"~ ' = qf., i = 1,2,...,r. The temperatures at the N, nodal points in the
solid/liquid interface at time #,,,_, can be approximated using the following truncated
Taylor series expansion :

Fri—|

T£+"*‘=i{+l‘"+‘Z-gi{gw--f(qg—qgt), k=12... N, i=012...r (2D

Equation (21) can be written in a compact form as

T = T+S(¢5-¢5), 2)

where

T=(T,Ta...,Tsy. ., T)T with T, = (T4 T T TR Y
(23)

and the sensitivity matrix S is defined as
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S=(S,,S2...,S...,S,)T where S, = (S{tLSETL L SETL L SEEDT
(29)

with

aT£+i— 1
aqy

s£+i‘l —

(25)

The vector T has a form similar to the vector T and is calculated through a direct problem,
using q5. and the known freezing front motion. More details on this will be given later.

The goal is to calculate the optimum value of the vector qj such that the error between
the approximated temperatures Tf*'~' and the given interface temperature (7,) is
minimum, i.e.

min {(Y —T)"W(Y —T) +a(q0) " Wogo -+, (Hgo) "W, (Hqo) (26)

where o, and «, are regularization parameters with ay > 0, o; > 0, W, W, and W, are
optimization weighting matrices and H is the first order spatial regularization coefficient
matrix. These matrices are discussed in detail in Zabaras e al. (1992). The vector Y is
defined as

Y=(Y,Yo...Ys...,Y)T where Y, = (Tp,Tose-vs Ty s T). Q7

The second term in eqn (26) has been added to keep the estimated boundary fluxes at
finite values, and the last term is necessary to avoid large flux variation between adjacent
nodal points (Tikhonov and Arsenin, 1977). Performing the minimization and after some
manipulation,

q5 = (STWS+a,W,+ o, H'W H) ' [STW(Y —T) + STWSq}.. (28)

A discussion on the selection of the regularization parameters is given in Zabaras et al.
(1992). Using eqn (28), the boundary nodal unknowns can be found. The temperature field
can then be obtained by solving a direct boundary value problem. An iterative procedure
must be performed due to the nonlinearity of the problem. For a related BEM analysis of
an inverse elasticity problem see Zabaras et al. (1989).

Calculation of T. To evaluate T one must solve a direct problem with prescribed flux
q5 and B, and known interface motion on dB,. This is a slightly different direct problem
from the one presented in the first part of this paper.

The integral eqns (4) and (8)—(10) provide (N, +3N,) equations that can be solved for
the (N, +3N,) unknowns which include TE(N)), ¢, (N,), ¢5,(N,) and T(N,). It must be
emphasized again that it is the interface velocity [i.e. from eqn (4) the interface flux
discontinuity] rather than the individual interface fluxes, q,, and q,, that are required in
solving this direct problem.

3.3. Calculation of the sensitivity coefficients
An easy and rather obvious way to calculate sensitivity coefficients is by finite differ-
ences approximations. For example, one can write
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aT{-H-] TF+| I j‘wml 1
) 8qga A Aq()u -

k=1,2,...,Ny;i=1,2,....r;a=1,2,....N,, (29)

where temperature T is calculated by solving the direct problem similar to T with the
boundary condition (1+ 4)q§. and i = 0.001.

An alternative, direct and more accurate way of calculating these sensitivity coefficients
using the BEM was presented by Zabaras et a/. (1988). To demonstrate the calculation of
the sensitivity coeflicients at 7., let us write eqns (8), (9), and (10) in a matrix form as
follows [see Brebbia et al. (1984) for notation].

Equation (8) may be written as:

AT+ AT, = Biqh +BIiqh, + AL 'Th '+ AL 'TL '+ BE g5 '+ BIE- gty '+

i

(30)
where all matrices A7 and B, J = F,..., 1 are of order N, x N, and all matrices AIZ and
BI;, J=F,...,1are of order N, x N,.

Similarly eqn (9) becomes
CIT;+CILT, = Diqi +DIfq), +Cr 'T) '+ CI5 ' Th '+ D 'qh ' +DIE 'qfy '+,

(31
where all matrices C; and D%, J = F,.... 1 are of order N, x N,, while CI} and DI are of
order N, X N,.

Finally, eqn (10) becomes
GiT) = Elq},+Gt '"TL "+ EL 'qh '+ (32)

Subscripts in the above matrices denote current time of reference, while superscripts
denote the time interval during which the integration is carried out. T{ denotes all nodal
temperatures on 0B, at time 7,, q all nodal fluxes at ¢, and q,, and q, the interface fluxes
in the solid and liquid phases respectively. Finally, Ty, are the calculated temperatures at
the moving front. Note that the above matrices can be easily calculated in an explicit
manner since the freezing front motion is a priori known. One-dimensional calculations can
be found in Zabaras et al. (1988).

Let us assume that the interface velocity is given. We want to find the sensitivity of

" with respect to q5, i.e. 0T}/oq5.
Let us rewrite eqns (30)—(32) as follows:

Af Al —BI; 0 Tt
Cci CIy -DIf 0 T
0 G- 0 —Ei| |qm,
0 0 | -1 q.,

BE

0 QO
= VP +known terms from calculations at earlier times (33)
0 0
0 plLl

where I is a unit diagonal matrix of order N, x N,.
From eqn (33) it becomes obvious that the required sensitivity coefficients are given
as
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FOT

0

AL AE —BEE o | ' [BE o ||1
T~ Ct CEE -DE 0 D 0 {1 w
w710 GE o —EE] o0 o0 ||| (

0 0 I -1 0 pLI||1

0

L0

where the unit elements in the vector on the right-hand side of the equation above start at
the location (N,+ 1) and end at the location (N, + N,). The matrix inversion indicated in
eqn (34) must be performed analytically. This can be computationally inefficient, especially
if (Ny+3N,) is too large.

We have not yet investigated the merits of eqn (34) relative to those of eqns (29). Note
that to evaluate 0T%/dq5, J = F+1,..., F+r—1, one should write equations similar to eqn
(33) where the reference time is not t; but ¢y, ,, i =2,...,r. In doing so, the boundary
fluxes should be regularized in time such that

Details and final expressions for one-dimensional problems can be found in Zabaras
et al. (1988).

4. NUMERICAL EXAMPLES

4.1. Dimensionless parameters
For the problems to be considered the following dimensionless parameters have been
used :

X y
¢ = = ¢ =1 = = — =,
KA 15 KI K[/KJ’ cs s € C[/CS, X R s y R

where R is a characteristic length, and St is the Stefan number defined as:

(T, —Ty)

St = i3 .
4.2. The direct problem

The first example considered is that of a square 2 x 2 which is filled with liquid at the
melting point (8, = 0). The surface is suddenly cooled to 8, = —1.

Figure 2 shows the interface locations at various dimensionless times 7. Figures 3 and
4 show interface progression with time along the adiabatic (x, = 1) and diagonal (x, = x,).
The BEM results are here compared in Fig. 3 with the implicit finite difference solution of
Rao and Sastri (1984), the work of Lazaridis (1969), and also in Fig. 4 with the semi-
analytical solution of Rathjen and Jiji (1971). These BEM solutions compare very well with
the solutions from other numerical schemes as is seen in Figs 3 and 4. Temperature
calculations for some internal points are shown in Fig. 5.

The following example involves a square of 2 x 2 with
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1.0 § =0
8.,.=
0.9+ k,:.=o
St=1/1.5613
0.8}
o7k 1204775
0.6
X2
0.5
0.4 T=02075
7=0.095
0.3
0.2+
o. I A 1 L i 1 1 1 1 1
0l 02 03 04 05 06 07 08 09 10
X
Fig. 2. Interface motion in a square mold as a function of time [from Zabaras and Mukherjee
(1987)].
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é - /o/
S 02+
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€O} ® |azaridis
- O Rao et al.
0.00 1 L 1 ) 3
0.0 ol 0.2 03 04 0.5
Time T
Fig. 3. Interface motion in a square mold along the adiabatic x, = 1 as a function of time. Same
situation as in Fig. 2 [from Zabaras and Mukherjee (1987)].
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- °
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0.1 r O Rathjen and Jiji
1 —_ 1 1 —d. 1. L - | |

N 1
0.8.(60 006 012 018 024 030 036 04 048 054 060
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Fig. 4. Interface motion in a square mold along the diagonal x, = x, as a function of time. Same

situation as in Fig. 2 [from Zabaras and Mukherjee (1987)].
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-0.8 3: (1,0.6)
_09 -
_|o - ' 1 1 | L 1 1 1 |
000 005 OI0 015 020 025 030 035 040 045 050
Time T

Fig. 5. Temperature distribution at some internal points with respect to time during solidification
in a square mold. Same situation as in Fig. 2 [from Zabaras and Mukherjee (1987)].

¢ = 1, k1= B 00= —1, 0,':0.3 and St=4

The same problem has been analysed previously by Budhia and Kreith (1973), Comini et
al. (1974), Ralph and Bathe (1982) and Zabaras and Ruan (1990).

Figure 6 shows the front position on the diagonal (x, = x,) and Fig. 7 the temperature
at the internal point x;, = x, = 0.5. In Fig. 6 comparison is made with Ralph and Bathe
(1982). The time step for the BEM is At = 0.0225 and that for the FEM is Ar = 0.02. A
similar comparison is made in Fig. 7 where two time steps have been used. The FEM results
of Ralph and Bathe (1982) show a big difference with a change in time step from 0.02 to
0.1. They have been found not to be in good agreement with the semi-analytical solution
of Rathjen and Jiji (1971) [see Zabaras and Ruan (1990)].

A similar example with

c,=1, k1= N 00=“1, 9,:1 and S’=2

has been analysed. Figure 8 shows the interface location at various times. Figures 9 and 10
compare the diagonal and asymptotic positions of the interface, respectively, with the results
given by Rao and Sastri (1984). Figure 11 compares the temperature history at the center
of the mold with Rao and Sastri (1984).

09
wo8f m=0 P
x 9, =0.3 %
"
07 G-l /
o St=4 /O o
§ 0.6 - kg =1 /o o
] o ©
c 05 o
L P
B - [o]
§ 0.4 ./
@ 03 /
8 ® . .
T ozl —— Anaglytical solution
2 ® FEM (At=002;
~ 0.1}9 O BEM (At=0.0225)

1 1 i i 1 1 L J

00@®
0000 0025 0050 0075 O0.00 O0.25 0450 0.I75 0.200
Time T

Fig, 6. Interface motion in a square mold along the diagonal x, = x, as a function of time. Analytical
solution from Budhia and Kreith (1973). FEM solution from Ralph and Bathe (1982) [from Zabaras
and Mukherjee (1987)].
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Fig. 7. Temperature history of the point (0.5, 0.5) during the solidification in a square mold. Same
situation as in Fig. 6. FEM solution from Ralph and Bathe (1982) [from Zabaras and Mukherjee
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Fig. 8. Interface motion in a square mold as a function of time [from Zabaras and Mukherjee
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Fig. 9. Interface motion in a square mold along the diagonal x, = x, as a function of time. Same
situation as in Fig. 8 [from Zabaras and Mukherjee (1987)].
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Fig. 10. Interface location in a square mold along the adiabatic (x, = 1) as a function of time. Same
situation as in Fig. 8 [from Zabaras and Mukherjee (1987)].

In all the above examples the minimum time step was 0.0225 and the maximum 0.1.
The error tolerance parameter ,,, = 10~ 2. The equivalent heat capacity model has been
used up to time 0.005 to initialize the BEM calculation. Double nodes have been considered
both on B, and 0B,.

4.3. The design problem

Consider solidification in a one-dimensional semi-infinite region 7; =7, = 0, K, = 1,
ps,=1,¢,=1,L=1/2andgq,,= 1. Then ¢q,, = 0 and ¥V = 2. The analytical solution of this
problem is given as

gos(1) = e* (35)
and
To () = 3(1—e*). (36)

No spatial regularization is involved in this one-dimensional problem. The sensitivity

1.0 f——0—0
o9Ff N

os} N

o7} \

06} o\
05 0

04r Q

Temperature 8

0.3t o

o2} \
— BEM o

0.1 O  Rao and Sastri

o-o 1 1 1 1 J
0.00 0.05 0.10 0.15 0.20 0.25
Time T

Fig. 11. Temperature distribution at the center of a square mold as a function at time. Same situation
as in Fig. 8 [from Zabaras and Mukherjee (1987)].
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Fig. 12. Boundary temperature ¢,, as a function of time for different time steps [from Zabaras er
al. (1988)].

coefficients are calculated analytically in a way similar to that presented earlier, Figures 12
and 13 show plots of the filux q,,(#) together with the exact solutions given by eqns (35)-
(36) for three different time steps, At = 0.1, 0.05 and 0.005. One future time step (r = 2)
has been used to stabilize the solution. As expected, when the interface moves away from
the x = 0 boundary, oscillations or divergence from the analytical solution occurs. In the
above figures only the stable region has been plotted. As can be seen, the smaller the time
step, the more accurate the numerical solution, but also the sooner it starts to diverge from
the exact solution.
To test the algorithm in the liquid phase the following case is considered here :

Y}—:'—l, Tm=0, kl-_—-l, ngl, pg=1, C;=1,
0.43

1
L=2 1=1, V=7, h=0.86\/;, g = —0.76178 —=.
t t

oo

-X—Xgy
%‘o‘hx'o*x\x,ph
X
g O
-5 o
g ™~
- o
e _iok Analytical N x
= Present Method \
]
a o] A" =0.1 o
E -I5F x Aty =0.05
= -=-Aty = 0,005
>
g -20+
=1
=3
@
-28k
o]
..30 1 [ L 1 I L 1 L. L. L
0.0 O.t 0.2 0.3 0.4 [vX.] 0.6 o7 08 09 1.0

Time ¢

Fig. 13. Boundary temperature T\, as a function of time for different time steps [from Zabaras ez
al. (1988)].
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Boundary temperature g, as a function of time for different time steps [from Zabaras et al.

The above are approximations to the exact desired data that correspond to the fol-
lowing analytical solution :

[see Zabaras (1990)].
Figures 14 and 15 show the calculated temperature gradient and temperature at x = /.
As expected the solution is inaccurate (still stable at early times), while very accurate and

stable later. Note that if the exact desired data were used (V = 0.432756/

1
qot) = 1.04376027

1
To() = —1+1.85001Terfe——

e—l/dr’

(37
t

(38)
2/t

A/t @ns = 0) the

estimated ¢4 and Ty, are in very good agreement with the exact solutions (37) and (38).

Boundary Temperature T,
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olxoZi
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® Aty=0.2
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‘00 0.

Time t

1 1 3 3 i 1 1 1
02 03 04 05 06 07 08 09 1.0 .1

.2 13

Fig. 15. Boundary temperature T, as a function of time for different time steps [from Zabaras et

al. (1988)].
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