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Abstract-This paper elaborates on the analysis and design of the solidification of pure metals. In
the first part of this paper, a direct analysis is presented for the motion of the solid-liquid freezing
interface and the time-dependent temperature field. An iterative implicit algorithm has been
developed for this purpose using the boundary element method (BEM) with time dependent Green's
functions and convolution integrals. Emphasis is placed on two-dimensional examples. The second
part of this paper provides a methodology for the solution of an inverse design Stefan problem. A
method for controlling the fluxes at the freezing front and its velocity is demonstrated. The BEM
in conjunction with a sequential least squares technique are used to solve this ill-posed problem
that has important technological applications. The accuracy of the method is illustrated through
one-dimensional numerical examples.

I. INTRODUCTION

Problems of solidification of pure substances share the characteristic of an isothermal
moving interface (freezing front). The freezing front motion and fluxes must be calculated
as part of the solution of the phase change boundary value problem. Heat conduction is
assumed in both solid and liquid phases and all thermal properties are considered tem
perature independent.

The flux discontinuity at any point of the interface is related to its normal velocity by
the equation balancing the rate of heat flow with the energy rate required to create a fresh
amount of solid per unit time (Stefan condition).

A solidification problem is considered direct when the temperature or the flux on the
fixed boundary of a solidifying body, with given material properties, is prescribed.

There is an extensive literature on the above and related "Stefan" problems. The
methods used to solve these problems can be categorized (Crank, 1984) into analytical,
front-tracking, front-fixing and fixed-domain methods. The existing analytical solutions are
primarily for one-dimensional problems (Crank, 1984) and two-dimensional wedge-shaped
spaces (Budhia and Kreith, 1973; Rathjen and Jiji, 1971).

Front-tracking methods involve finite differences or finite elements on a fixed grid
(Lazaridis, 1969; Rao and Sastri, 1984), or on a variable space grid (Murray and Landis,
1959) or the use of adaptive meshes (Bonnerot and Janet, 1977; Lynch, 1982; Albert and
O'Neill, 1986; Zabaras and Ruan, 1990). An alternative formulation includes front-fixing
methods (Crank and Gupta, 1975) where the moving front is fixed by a suitable choice of
space coordinates. In the fixed-domain methods the problem is formulated in such a way
that the interface condition becomes implicit in a new form of the equations, which applies
over the whole of a fixed domain (Ralph and Bathe, 1982; Hsiao, 1985; Voller and Cross,
1981; Roose and Storrer, 1984).

Integral formulations for one-dimensional problems have been applied extensively in
the past (Chuang and Szekely, 1972; Banerjee and Shaw, 1982; Heinlein et al., 1986;
O'Neill, 1983; Sadegh et al., 1985). O'Neill (1983) gave a general integral formulation for
quasi-static phase change problems, while Zabaras and Mukherjee (1987) extended this
work to transient problems. Similar work has also been reported by Sadegh et al. (1985).
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Hong et al. (1984) have solved two-dimensional solidification problems by updating the
position of the interface at each time step while keeping the interface location fixed during
the calculation of the temperature field at each time step.

This first part of this paper is concerned with a BEM formulation of two-dimensional
direct solidification problems. The general integral equations are presented together with
their numerical implementation. Special emphasis is given on key issues such as the accurate
calculation of singular integrals, the iterative technique and the calculation of the interface
motion. Numerical results for some sample two-dimensional solidification problems are
presented and discussed. The detailed analysis is presented in an earlier publication by the
authors (Zabaras and Mukherjee, 1987).

Design Stefan problems, where the temperature, fluxes and velocity are prescribed on
the freezing front, while the temperature and the flux on the fixed boundary of the domain
of interest are unknown and must be determined by the analysis, are also discussed in this
paper. They were first introduced in one dimension by Zabaras et al. (1988) who extended
Beck's (Beck et al., 1985) sensitivity analysis to problems with phase changes using a HEM
analysis. By controlling the freezing interface fluxes and velocities during solidification the
cast structure can be controlled and made more uniform (Zabaras et aI., 1988; Flemings,
1974). Further discussion and finite element results of such inverse design Stefan problems
are given in recent publications by Zabaras and co-workers (Zabaras and Ruan, 1989;
Zabaras, 1990; Ruan and Zabaras, 1991; Zabaras et al., 1992). Here, our work reported
in Zabaras et al. (1988) is extended to two-dimensional problems. Smoothing in time and
space is introduced in the sense used by Zabaras et al. (1992). The HEM analysis allows
easy and accurate calculation of the sensitivity coefficients and provides certain other
advantages by permitting direct calculation of the surface fluxes. Typical one-dimensional
results are reported and discussed at the end of this paper.

2. DIRECT ANALYSIS OF SOLIDIFICATION

2.1. Governing differential equations
A liquid at an initially uniform temperature T; (equal to or above the melting point

Tm) is assumed to occupy a region with a fixed boundary oBo. At time t > 0, the boundary
oBo is cooled to a temperature lower than the melting temperature Tm • Solidification
starts all around aBo and proceeds inwards. The interface at some time t is denoted by
oBI (Fig. 1).

The governing differential equations, in the absence of heat sources and with constant
material parameter, are (Crank, 1984):

(1)

(2)

Fig. 1. Geometry of the solidification problem [from Zabaras and Mukherjee (1987)].
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where for example, Ts(x, t) is the temperature at the point x E Bs at time t and the rest of
the notation is clear from Fig. I.

The thermal diffusivity ks ofthe solid phase is equal to K./P.c. in terms ofits conductivity
K., densitiy P. and specific heat c., respectively. Similar notation is used for k,. The boundary,
initial and freezing interface conditions are given as:

T(x,t) = To(x,t) xEoBo"

oT
K. on == q(x, t) qo(x, t) X E oB02 ,

T(x, t) Tm xEoBI>

aT. OT, aVn
K - -K,- = p.L---:;-t xEoBI>

sons on" u

Bs = 0 at t = 0,

T(x,O) == T j = const xEBL(O),

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

where To is a prescribed temperature history on the part oBo, ofaBo and qo is the prescribed
flux on the remaining part aBoz of oBo, Tm is the melting point of the solid and L the latent
heat of fusion. Further, Vn is the normal velocity of the solidification front at a point on
oBI.

To simplify the involved calculations we assume that Tj is constant throughout BL(O).
With new simplified notations for fluxes, one can write the freezing interface normal velocity
in the form

(4)

where

A direct solidification problem is defined as one ofsolving eqns (I)-(4) for the interface
normal velocity Vn , and the temperature field. This can be achieved by solving the integral
equations as presented next.

2.2. Integral formulation
One can write the following integral equations (Zabaras and Mukherjee, 1987). For

the solid phase, with PE oBs == oBo u oBI:

with the temperature T on the left-hand side of the above equation being equal to Tm and
To, respectively, for the cases PEoBIand PEoBo. These equations are called (5a) and (5b),
respectively, for ease of reference.

For the liquid phase, with PEoBI
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with the Green's functions Gs and G, defined as

exp [- 4k(;~ to)]

G(p,t;q,to)= [4nk(t-t
o
)r/ z ' (7)

where m is the dimension of the problem and c(P) in eqns (5) and (6) is specified as in
Zabaras and Mukherjee (1987).

A major simplification arises in eqn (6) if Ti = Tm •

2.3. Numerical implementation
The solution strategy consists of the use of suitable shape functions, in space as well

as in time, for the unknowns of the problem, and marching forward in time. The solid
liquid interface, of course, is part of the solution and must be updated continuously in time.
Convolution type integrals must be calculated over a variable domain all the way from the
initial zero time.

The boundaries aBo and oBI are divided into N I and N z (at time zero) linear straight
segments. The freezing interface mesh is considered, in general, a function of time. This is
in order to account for the movement of the freezing front. Omitting indications of source
and field points, the discretized forms of eqns (5a), (5b) and (6) are:

For the solid phase, with PE oBI

and, with PEoBo

For the liquid phase, with PEoBI

(10)

Note that the interface velocity and position'enter the above equations in an explicit
as well as in an implicit and nonlinear manner through the Green's functions.
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Linear shape functions in space and in time are chosen here. Specifically, for the time
step (tr-l> tr), and for a straight boundary element on oBi with nodes I and 2 denoting the
start and end of the element, the flux qms> for example, can be written as

where the spatial and time shape functions 4>i and "'I are given as

4>1 = l-s/l1s, 4>2 =S/l1s,

(11)

(12)

(13)

with I1tf = tf - tf-' and q~si denoting the nodal flux at node i at time tf. The distance s is
measured along the element of length I1s(t), starting at node I. Expressions similar to (12)
are also valid for qm[, Vnand qo.

The integrals which appear in eqns (8)-( 10) have one of the following forms:

(14a)

(14b)

(14c)

(14d)

for i = 1,2 and oBk an element on the stationary boundary aBo or on the moving interface
oBI' The source point of reference in the above integrals can lie on aBo or oBI'

2.4. Evaluation ofintegrals
(a) Integration over aBo with source point on aBo. This case includes integrals similar

to those for non-phase change heat condition problems [see Brebbia et al. (1984)].
(b) Integration on aBo with source point on oBI' With estimation of the position of

the source point a Gaussian integration in space and in time can be effective (no
singular integrals appear in this category). The interface position at time t F can
be estimated, by assuming that the interface moves during the interval (tF- 1, tF)

with the velocity it has at time tF _,.

(c) Integration over oBi with source point on aBo
(i) case tl = tF

Using an estimate ofthe position of the interface during the interval (tF- h tF),
simple Gaussian integration can be effective.

(ii) case tl =I- tF

Considering that the interface is moving on the interval (tf- 1> tl ) with the
constant known velocity (VI + VI _,)/2, Gaussian integration can be used,
where VI and VI _, are the velocities at the end and beginning of the time
interval.

(d) Integration over aB, with source point on aB,.
(i) case tf =I- tF

This case is very similar to the cases (b) and (c) above
(ii) tl = t F

If the source point p¢ aBlk similar ideas as above can be applied. The singular

$AS 31:12/13-N



1834 N. ZABARAS and S. MUKHERJEE

case PE aBI , requires special care. Splitting, for example (14d), into two parts
1;3 and 1;'3

where

the first integral I; 3 is nonsingular and can be evaluated as before. The singular
integral 1;'3 is obtained as follows. Since the interval tF- tt is small, it is
assumed that the order of the spatial and time integral can be reversed in this
case even though the interface element moves a little during this time interval.
This assumption permits /;'3 to be evaluated analytically as is done for the
integrals in case (a) above. The shape functions in 1;'3 are defined over the
entire interval tF - 1, tF . The final expressions for these integrals are given in
Zabaras and Mukherjee (1987).

2.5. Modeling ofcorners
Single corner nodes on the interface aB/. A length weighted average normal 0 at the

corner node i is defined as

(15)

in terms of the lengths li- I and Ii and unit normals 0i- I and 0i of contiguous elements. The
normal velocity Vn at node i is now assigned along the unit vector 0/101.

Physical corners on the freezing interface are modelled by double nodes. Let Vn(i) and
VII(i+ 1) be the normal velocities at the (physically same) nodes i and i+ 1. To avoid singular
matrices, we assume that the physical corner has a unique velocity of magnitude Vn in the
average normal direction 0 defined by eqn (15) with Ii and 0i replaced by li+' and 0i+ 1

respectively.
An independent relation between Vn(i) and Vn(i+ 1) results as

(16)

The tangential motion of the freezing interface modes does not come into the physics
of the problem. However, it has to be specified artificially by the analyst so that the proper
mesh is always preserved on aB,. Further discussion of the importance of the tangential
motion of interface nodes is given in Zabaras and Ruan (1990).

Double nodes are also used at points on aBo in order to allow for flux discontinuities
across geometric corners. An interesting situation arises at a physical corner on aBo if the
temperature T is prescribed on both elements meeting there. Again, a singular matrix can
be avoided in this situation by including an extra equation. The unknown flux at one of the
double nodes is replaced by the flux obtained by backward differences from the prescribed
temperatures on contiguous elements at these nodes.

2.6. Matrix formulation
Let us consider the case when To is prescribed all over aBo. Equations (4) and (8)-(9)

contaim. the unknown nodal boundary vectors q~s, q~1 and q~ at time tF• In matrix form we
can write them as:
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where

[L1]][q~s] [S][E] q~/ = , ,
[4>] q~ 11

(17)

(J. = 1+ TmjpL,

f3 = -TmjpL,

'Y = -(Tm-Tt)/pL,

<5 = -1 + (Tm T;)jpL

(18a)

(18b)

(18c)

(18d)

and [4>] denotes the zero matrix. The matrices [A], [B], [r], [L1] and [E] contain calculations
over the last time step (tF - 1 to tF). The vectors on the right side of (17) are known from
previous calculations (time zero to tF - 1) and the applied boundary conditions, and they
are not given explicitly here.

For the case Tm = T; a reduced form ofeqn (17) (with qm/ = 0) has been used. For the
superheated case (T; > Tm ) eqn (17) has been combined with the following equation:

(19)

where V pr is the predicted velocity vector in the time interval tF - 1 to tF •

Equations (18) and (19) have been solved in a least squares sense for the flux vectors
qms> qm/ and qo. Equation (19) is introduced in order to avoid numerical divergence which
appears at early times, when oBo = oBo, and when eqn (17) is used alone. It is obvious that
a proper scaling of eqns (17) and (19) has to be used before their final solution.

A simple iterative procedure is adopted here. Before updating the geometry and
continuation to the next time step, one must check ifthe nodal positions on OBI at time tF,

predicted at the end of a successful iteration, are such that numerical instabilities could
appear at the next time step t F to tH I' These instabilities usually occur when the freezing
interface nodes come very close to each other. If this is the case, then remeshing must be
performed by node removal or node rearrangement (i.e. by introducing nodal motion
tangential to the interface).

The advantage of this BEM formulation with respect to the so-called "domain
methods" and other front tracking techniques is that for the calculation of the temperature
at points internal to the domain one does not have to calculate all the internal temperatures
over the entire domain. The equation corresponding to internal temperature calculation is
not given here, but it has a form similar to that of the boundary equations given earlier.
Two disadvantages are also present in the BEM analysis. At first, like in other front tracking
techniques (Zabaras and Ruan, 1990), one must assume at time zero the existence of some
solid (Zabaras and Mukherjee, 1987). The second major disadvantage is that the fluxes qms
and qml appear separately in the analysis and not in the combined form which yields the
normal interface velocity [see egn (4)]. As a result, the direct calculation of both interface
fluxes leads to progressively incorrect front motion which can eventually violate global
energy conservation. For a weak form of the Stefan condition, an energy conserving scheme
and more references on the subject see Zabaras and Ruan (1990).

3. AN INVERSE/DESIGN SOLIDIFICATION PROBLEM

3.1. The problem
Of concern here is an inverse-design solidification problem that is defined as follows:

"Given the thermal properties of the solid and liquid phases and the melting temperature,
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calculate the boundary flux/temperature on aBo that achieves a desired freezing front
motion."

For solidification in a one-dimensional region 0 ~ x ~ I, one must specify the interface
fluxes qms(t) and qml(t) instead of specifying only the interface motion V(t). In this case,
Zabaras et al. (1988) have shown that two uncoupled inverse problems arise: one in the
solid and another in the liquid phase. They derived an unstable analytical solution in the
form of an infinite series involving the prescribed interface flux and velocity and their time
derivatives.

The importance of the above and related design solidification problems lies in the fact
that the quality of the solidifying crystals is directly related to the freezing interface fluxes
and velocity rather than the applied cooling boundary conditions on ana. These problems
are ill-posed in the sense that their solution may not be unique and stable to small changes
in the desired interface motion. Here a general methodology will be presented for two
dimensional problems and some one-dimensional examples will be discussed.

3.2. Future information and spatial regularization methods
The boundary element analysis prescribed earlier is a convenient tool for the analysis

of the above design problem since the freezing interface position/motion is known a priori.
Indeed, let us consider a boundary element discretization ofana and anI and a time stepping
process. The main unknowns of the design problem are considered to be the nodal fluxes
(or temperatures) all over ana. Let q~ denote the boundary nodal unknown fluxes on aBo
at t = t£, i.e.

(20)

where N j is the number of variables to be estimated, and q~i are the boundary heat fluxes
at the ith boundary nodes and at time tF' The given interface motion/position is treated as
a boundary condition on OBI' Then, one can consider that the temperature field at any
point inside the domain is a function ofq~ (through the solution of a direct boundary value
problem). Assume that the temperature distribution at time tF 1is known and that q~* is
an estimate of the vector of boundary nodal fluxes. Let the times tF+ i - h i = 1,2, ... ,1', be
future times with 1'-1 denoting the number of future time steps and N 2 be the number of
nodes on OBI' Then, following Beck et al. (1985), the vector q~+i- 1 is temporally constrained
to be given as q~+i-I = q~*, i = 1,2, ... ,I'. The temperatures at the N 2 nodal points in the
solid/liquid interface at time tF+i-1 can be approximated using the following truncated
Taylor series expansion:

aTF+i-1
F+i-I • F+i-I k (F F) k I 2 N . I 2 (21)T k = T k + --aqf-" qo-qo*, =, , ... , 2, 1= , , .. "I'.

Equation (21) can be written in a compact form as

(22)

where

T (T T T T )T w\'th T - (TF+ i -- 1 T F+i ... 1 T F + i 1 T~'+i 1)'1== }, 2, .. ·, i,"" r i- J ,2 ",.,'\ k 1·'" I~I?

(23)

and the sensitivity matrix S is defined as
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8 8 )T where 8 - (SF+i- 1 SF+i-l SF+i- 1 SF+i-l)T8 = (8 1l 8 2"", i,"" r i-I, 2 , ... , k , ••• , N 2

(24)

with

(25)

The vector T has a form similar to the vector T and is calculated through a direct problem,
using q~. and the known freezing front motion. More details on this will be given later.

The goal is to calculate the optimum value of the vector q~ such that the error between
the approximated temperatures T[+i- 1 and the given interface temperature (Tm ) is
minimum, i.e.

(26)

where IXo and IX 1 are regularization parameters with IXo > 0, IX 1 > 0, W, W 0 and WI are
optimization weighting matrices and H is the first order spatial regularization coefficient
matrix. These matrices are discussed in detail in Zabaras et al. (1992). The vector Y is
defined as

Y = (Y \, Y2,"" Yi , ... , yr)T where Yi = (Tm, Tm, ... , Tm, ... , Tm). (27)

The second term in eqn (26) has been added to keep the estimated boundary fluxes at
finite values, and the last term is necessary to avoid large flux variation between adjacent
nodal points (Tikhonov and Arsenin, 1977). Performing the minimization and after some
manipulation,

A discussion on the selection of the regularization parameters is given in Zabaras et al.
(1992). Using eqn (28), the boundary nodal unknowns can be found. The temperature field
can then be obtained by solving a direct boundary value problem. An iterative procedure
must be performed due to the nonlinearity of the problem. For a related BEM analysis of
an inverse elasticity problem see Zabaras et al. (1989).

Calculation ofT. To evaluate T one must solve a direct problem with prescribed flux
q~. and oBo and known interface motion on OBI' This is a slightly different direct problem
from the one presented in the first part of this paper.

The integral eqns (4) and (8)-(10) provide (N l +3N2) equations that can be solved for

the (N 1+3N2) unknowns which include T~(Nl)' q~s(N2)' q~/(N2) and T(N2). It must be
emphasized again that it is the interface velocity [i.e. from eqn (4) the interface flux
discontinuity] rather than the individual interface fluxes, qms and qml that are required in
solving this direct problem.

3.3. Calculation of the sensitivity coefficients
An easy and rather obvious way to calculate sensitivity coefficients is by finite differ

ences approximations. For example, one can write
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art'+i- I rt'+i- 1_ rt'+, I

-~ ~ --1*F- - k = 1,2, ... , N 2 ; i = 1,2, ... , r; a = I, 2, ... , N 1, (29)
qOa /LqOa

where temperature T is calculated by solving the direct problem similar to t with the
boundary condition (I + .Ie)q~. and .Ie = 0.00 I.

An alternative, direct and more accurate way ofcalculating these sensitivity coefficients
using the BEM was presented by Zabaras et al. (1988). To demonstrate the calculation of
the sensitivity coefficients at tF , let us write eqns (8), (9), and (10) in a matrix form as
follows [see Brebbia et al. (1984) for notation].

Equation (8) may be written as:

(30)

where all matrices A~ and B~., J = F, ... , I are of order N 1 x N], and all matrices AI~ and
BI~, J = F, ... , 1 are of order N , x N 2 •

Similarly eqn (9) becomes

(31 )

where all matrices e~ and O~, J = F, ... , I are of order N I X N I, while el~ and DI~. are of
order N] x N 2 .

Finally, eqn (10) becomes

(32)

Subscripts in the above matrices denote current time of reference, while superscripts
denote the time interval during which the integration is carried out. T~ denotes all nodal
temperatures on aBo at time tj, q~ all nodal fluxes at t j and q~, and q~1 the interface fluxes
in the solid and liquid phases respectively. Finally, T~, are the calculated temperatures at
the moving front. Note that the above matrices can be easily calculated in an explicit
manner since the freezing front motion is a priori known. One-dimensional calculations can
be found in Zabaras et al. (1988).

Let us assume that the interface velocity is given. We want to find the sensitivity of
T~; with respect to q~, i.e. aT~/aq~·.

Let us rewrite eqns (30)~(32) as follows:

(33){~~}+known terms from calculations at earlier times

o
I

o ] in)o TF

-Ef qf
-I q",/

[
B~ 0]
Of 0

~ P~I

Alf

elf
Gf
o

[

Af

ef
o
o

where I is a unit diagonal matrix of order N 2 x N 2.

From eqn (33) it becomes obvious that the required sensitivity coefficients are given
as
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0

0

-BIj

1-, [ ][ A'
AIj o Bj 0 1

[or~J ~ C; Clj -Dlj o Dj 0 1

aq~ 0 Gj 0 -Ej 0 0

0 0 I -I 0 pLI 1

0

0

1839

(34)

where the unit elements in the vector on the right-hand side of the equation above start at
the location (N, + 1) and end at the location (N, +N2). The matrix inversion indicated in
eqn (34) must be performed analytically. This can be computationally inefficient, especially
if (N! +3N2) is too large.

We have not yet investigated the merits of eqn (34) relative to those of eqns (29). Note
that to evaluate aT~/aq~, J = F+ 1, . .. , F+r-I, one should write equations similar to eqn
(33) where the reference time is not tF but tF+;-" i = 2, ... , r. In doing so, the boundary
fluxes should be regularized in time such that

q~+;-! =q~, i= I,2, ... ,r.

Details and final expressions for one-dimensional problems can be found in Zabaras
et al. (1988).

4. NUMERICAL EXAMPLES

4.1. Dimensionless parameters
For the problems to be considered the following dimensionless parameters have been

used:

where R is a characteristic length, and St is the Stefan number defined as:

4.2. The direct problem
The first example considered is that of a square 2 x 2 which is filled with liquid at the

melting point (8; = 0). The surface is suddenly cooled to 80 = -1.
Figure 2 shows the interface locations at various dimensionless times !. Figures 3 and

4 show interface progression with time along the adiabatic (x! = 1) and diagonal (x, = x 2)'
The BEM results are here compared in Fig. 3 with the implicit finite difference solution of
Rao and Sastri (1984), the work of Lazaridis (1969), and also in Fig. 4 with the semi
analytical solution of Rathjen and Jiji (1971). These BEM solutions compare very well with
the solutions from other numerical schemes as is seen in Figs 3 and 4. Temperature
calculations for some internal points are shown in Fig. 5.

The following example involves a square of 2 x 2 with
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\.0

0.9

0.8

0.7

0.5

0.4

0.3

0.2

T=0.2975

pO.2075

r=0.095

O. I '----L-_J........--!-_.J--..l._...L--...l_....L.---.Jl-_

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
xI

Fig. 2. Interface motion in a square mold as a function of time [from Zabaras and Mukherjee
(1987)].

0.8 o

II 0.7..
ClO.6
c:
o
'00.5
c:
B 0.4
Cl
u
j2 0.3
QI

.E 0.2...
QI

C 0.1
-- BEM solution

• Lazaridis
o Roo et 01.

O.OO------'------L------J..-----...I-----~
0.0 0.1 0.2 0.3 0.4 0.5

Time T

Fig. 3. Interface motion in a square mold along the adiabatic XI = I as a function of time. Same
situation as in Fig. 2 [from Zabaras and Mukherjee (1987)].

1.0

0.9
N

" 0.8
II

,;: 0.7
g'
~ 0.6

.§ 0.5

-§ 0.4

~ 0.3
~
~ 0.2.5:
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o

o

-- BEM Solution
• Lazaridis
o Roo et 01.
e Rathjen and Jiji

I I I' I ,

0.06 0.12 0.18 0.24 0.30 0.36 0.42 048 054 060
Time T

Fig. 4. Interface motion in a square mold along the diagonal X I = X 2 as a function of time. Same
situation as in Fig. 2 [from Zabaras and Mukherjee (1987)].
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point I' (1.0.21
2: 11,0.41
3: (1,0.61

0.0

-0.1

-0.2

-0.3
Q)

f -0.4

~ -0.5.,
~ -0.6.,
F -0.7

-0.8

-0.9

-1.0 I....-_L----J'--~_.........._.-..._~_._..,,-.........-....&..-___'
0.00 0.05 0.10 0.15 0.20 025 0.30 035 0.40 0.45 0.50

Time T

Fig. 5. Temperature distribution at some internal points with respect to time during solidification
in a square mold. Same situation as in Fig. 2 [from Zabaras and Mukherjee (1987)].

c,=I, k,=I, 80 =-1, 8,=0.3 and St=4.

The same problem has been analysed previously by Budhia and Kreith (1973), Comini et
al. (1974), Ralph and Bathe (1982) and Zabaras and Ruan (1990).

Figure 6 shows the front position on the diagonal (XI = X2) and Fig. 7 the temperature
at the internal point XI = X 2 = 0.5. In Fig. 6 comparison is made with Ralph and Bathe
(1982). The time step for the BEM is M = 0.0225 and that for the FEM is I1t = 0.02. A
similar comparison is made in Fig. 7 where two time steps have been used. The FEM results
of Ralph and Bathe (1982) show a big difference with a change in time step from 0.02 to
0.1. They have been found not to be in good agreement with the semi-analytical solution
of Rathjen and Jiji (1971) [see Zabaras and Ruan (1990)].

A similar example with

c, = I, k, = I, 80 = -I, 8; = I and St = 2

has been analysed. Figure 8 shows the interface location at various times. Figures 9 and 10
compare the diagonal and asymptotic positions of the interface, respectively, with the results
given by Rao and Sastri (1984). Figure II compares the temperature history at the center
of the mold with Rao and Sastri (1984).
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--Analytical solution
_ FEM (61=0.02:
o 8EM (6t=0.0225)

8m =0 ~.'" 0.8
'" 8j =0.3
~ 0.7 80 =-I ____.__eo
~ 5t=4 ~. 0g 0.6 !.t = I 0

o .~o
c: 0.5 ......-cY
.2 /.
'8 0.4 /0
.Q ./-
Ql 0.3 ,,6
g •
~ 0.2 - /

-0.1 i
0.0(i)----'-----'-----'-----'-----'-----'-----'--_....J

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Time T

Fig. 6. Interface motion in a square mold along the diagonal x, = X 2 as a function oftime. Analytical
solution from Budhia and Kreith (1973). FEM solution from Ralph and Bathe (1982) [from Zabaras

and Mukherjee (1987)].
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Fig. 7. Temperature history of the point (0.5, 0.5) during the solidification in a square mold. Same
situation as in Fig. 6. FEM solution from Ralph and Bathe (1982) [from Zabaras and Mukherjee

(1987)].
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Fig. 8. Interface motion in a square mold as a function of time [from Zabaras and Mukherjee
(1987)].
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Fig. 9. Interface motion in a square mold along the diagonal x I = X2 as a function of time. Same
situation as in Fig. 8 [from Zabaras and Mukherjee (1987»).
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Fig. 10. Interface location in a square mold along the adiabatic (x I = I) as a function of time. Same
situation as in Fig. 8 [from Zabaras and Mukherjee (1987»).

In all the above examples the minimum time step was 0.0225 and the maximum 0.1.
The error tolerance parameter emax = 10- 2

• The equivalent heat capacity model has been
used up to time 0.005 to initialize the HEM calculation. Double nodes have been considered
both on aBo and oBl'

4.3. The design problem
Consider solidification in a one-dimensional semi-infinite region Tj = Trn = 0, K s = 1,

Ps = 1, Cs = 1, L = 1/2 and qrns = 1. Then qrnl = 0 and V = 2. The analytical solution of this
problem is given as

(35)

and

(36)

No spatial regularization is involved in this one-dimensional problem. The sensitivity
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0.00 0.05 0.10 0.15 0.20 0.25
Time T

Fig. II. Temperature distribution at the center of a square mold as a function at time. Same situation
as in Fig. 8 [from Zabaras and Mukherjee (1987»).
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Fig. 12. Boundary temperature qo, as a function of time for different time steps [from Zabaras el
al. (1988»).

coefficients are calculated analytically in a way similar to that presented earlier. Figures 12
and 13 show plots of the flux qos(t) together with the exact solutions given by eqns (35)
(36) for three different time steps, At! = 0.1, 0.05 and 0.005. One future time step (r = 2)
has been used to stabilize the solution. As expected, when the interface moves away from
the x = 0 boundary, oscillations or divergence. from the analytical solution occurs. In the
above figures only the stable region has been plotted. As can be seen, the smaller the time
step, the more accurate the numerical solution, but also the sooner it starts to diverge from
the exact solution.

To test the algorithm in the liquid phase the following case is considered here:

L = 2, I = I,
0.43 r: I

v= jt' h=0.86y t, Qml=-0.76178 J .

0 -x-xo--x()o.x-x.o..x
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Time t

Fig. 13. Boundary temperature T", as a function of time for different time steps [from Zabaras el
al. (1988)].



Solidification problems 1845

-- Analytical

o 6tf =0.1
• 6tf =0.2
It 6tf =0.05

Present Methad

It It

0.0

0.2 0

It

-0.8

o
0'

>- -0.6
~o
'a
Ie:
:::Jo

lD

~
:::J

~ii -0.4
D-
E

{!?

1:.,
:g
(5 -0.2

- 1.0'----1---L:--.,...",.-..,,L-~~-=-'"~_=.I:::__:_I=___="'=_____,J_=_.......,L-...,..L:.-~
0.0 0.1 0.20.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Time t

Fig. 14. Boundary temperature qOI as a function of time for different time steps [from Zabaras et al.
(1988»).

The above are approximations to the exact desired data that correspond to the fol
lowing analytical solution:

(37)

1
TO/(t) = - I + 1.850017erfc r.

2....; t
(38)

[see Zabaras (1990)].
Figures 14 and 15 show the calculated temperature gradient and temperature at x = I.

As expected the solution is inaccurate (still stable at early times), while very accurate and
stable later. Note that if the exact desired data were used (V = 0.432756/0, qms = 0) the
estimated qot and Tot are in very good agreement with the exact solutions (37) and (38).
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Fig. IS. Boundary temperature Tal as a function of time for different time steps [from Zabaras et
al. (1988»).
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